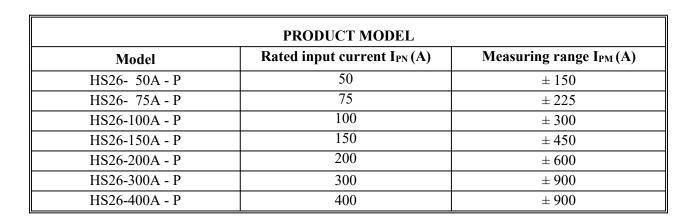


HS26-A-P SERIES CURRENT SENSOR/TRANSDUCER

DESCRIPTION:

For the electronic measurement of current: DC, AC, pulsed ..., with galvanic separation between the primary and the secondary circuit.


FEATURES:

- Open loop using the Hall effect
- The primary side and the secondary side are isolated
- Low power consumption
- Wide range
- No insertion loss
- ◆ Raw materials recognized according to UL94-V0

APPLICATIONS:

- ♦ Inverter
- Uninterruptible Power Supplies (UPS)
- Static converters for DC motor drives
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Battery management

MODEL LIST:

HS26-A-P SERIES CURRENT SENSOR/TRANSDUCER

HS26-AP SPECIFICATION

Parameter	Symbol	Unit	Value	Test Conditions						
Electrical Data										
Supply voltage (±5%) ⁽¹⁾	Vc	V	±15							
Current consumption	I _C	mA	±15							
Output voltage (analog output)	V _{OUT}	mV	±4V±40	$(\underline{a}) \pm I_{PN}, R_L = 10 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$						
Overcurrent capability (1ms)	I _{PC}	At	50* I _{PN}							
Insulation resistance	R _{IS}	MΩ	>1000	@500VDC						
Internal impedance	R _{OUT}	Ω	100	approximation						
Load Resistor ⁽²⁾	R _L	KΩ	>10							
	Performance Data									
Linearity $^{(3)}(0\pm I_{PN})$	ε	%of I _{PN}	<±1							
Precision	Х	%	<±1	(a) I _{PN} , T _A = 25°C						
				(remove zero offset voltage)						
Zero offset voltage	V _{OE}	mV	<±20	$@T_A = 25^{\circ}C$						
Magnetic offset voltage	V _{OM}	mV	<±20	@I _P =0; After 1 times the rated current impact						
Zero offset temperature drift	TCV _{OE}	mV/K	<±2	@HS26 -50A ~75A- P						
			<±1	@HS26-100A ~ 4 00A - P						
Output offset temperature drift	TCV _{OUT}	%/K	<±0.1	@% of reading						
Response time	t _r	μS	<3	@ 90% of I _{PN} step response						
Current follows d _i /d _t	d_i/d_t	A/µS	>50							
Bandwidth ⁽⁴⁾	BW	kHz	DC~50	@-3dB						
General Data										
Ambient operating temperature	T _A	°C	-40+85							
Ambient storage temperature	Ts	°C	-40+105							
Mass	m	g	30	approximation						

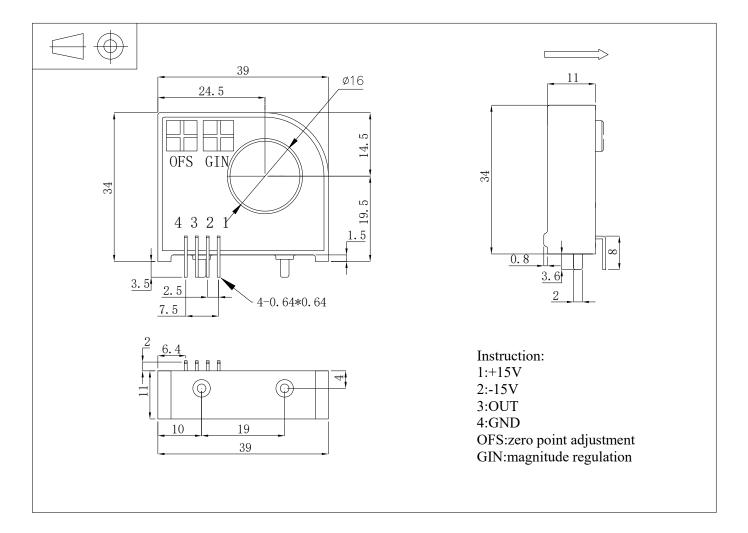
Notice:

(1) Under the power supply condition of $\pm 12V \le VC \le \pm 15V$, the measurement range of the sensor will be reduced;

(2) If the customer uses a load resistance of 1 K Ω , the current to be measured needs to be limited to the rated current. If the full-scale current is to be measured, the load resistance should be at least 10 K Ω .

(3) Linearity data does not include zero offset.

Insulation data :


Parameter	Symbol	Unit	Value	Remark
AC isolation withstand voltage test RMS @ 50Hz, 1min	UD	KV	3.6	
Impulse withstand voltage 1.2/50uS	Uw	KV	6.6	
Shell material	-	-	UL94-V0	РРО
Relative tracking index	CTI	V	275	
Creepage distance	d _{CP}	mm	4.5	
Electrical clearance	d _{CI}	mm	4.5	

Maximum limit:

Parameter	Symbol	Unit	Value
Supply voltage	Vc	V	±18
Output current (output shorted to ground)	Iout	mA	-
Electrostatic discharge - contact discharge	$V_{\rm ESD}$	V	4000

Mechanical Dimensions :

Safety

This device must be used according to IEC610101.

This device must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the operating instructions.

Caution, risk of electrical shock.

When operating the device, certain parts can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This is a builtin device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield can be used.

Main supply must be able to be disconnected.