

CS09H-500A-C SERIES CLOSED LOOP HALL CURRENT SENSOR/TRANSDUCER

DESCRIPTION:

This series of current sensors are based on the principle of closed-loop Hall sensor with temperature calibration technology, using single power supply, CAN bus output, automotive product design, suitable for pure electric vehicles, plug-in hybrid electric vehicles and other energy storage equipment peak current $\pm 500A$ DC, AC or pulsating current measurement.

FEATURES:

- ♦ High precision, low temperature drift, help customers accurately calculate battery SOC
- ◆ Large amount of process over current protection ability
- ◆ Panel installation, compatible with many products on the market, easy to replace

• Wide working voltage range, and strong self-recovery ability, ensure CAN bus communication stable and reliable

- Output signal: high-speed CAN, a variety of output optional, convenient for different applications
- ◆ Internal digital low pass frequency filter
- ◆ Connector type: TE MPN 1473672-1

ADVANTAGES:

♦ High overall accuracy: The error is 0.3% at room temperature

The error is 0.5% in an overtemperature environment

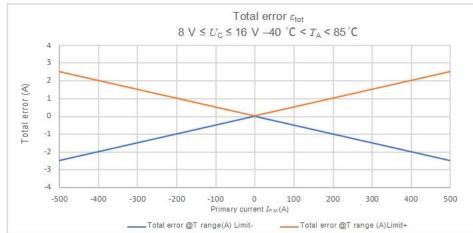
◆ Full range current isolation

APPLICATIONS:

- Hybrid and electric vehicle battery pack
- Conventional lead-acid batteries
- ◆ Accurate current measurement for battery management applications(SOC, SOH, SOF, etc...).

Absolute Maximum Ratings (Not Operating)

Parameter	Symbol	Unit	Specification	Conditions
To load Over-voltage	Vc	V	32	400 ms
Over-voltage	Vc	V	24	10 minutes
Reverse input voltage	Vc	V	-50	10 minutes
Minimum input voltage	V _{Cmin}	V	6	Continuous, not measuring
Maximum input voltage	V _{Cmax}	V	18	Continuous, not measuring
CAN work, low voltage fault alarm, non-measurement	V _C	V	6~7	CAN continuous
CAN work, Over-voltage fault alarm, non-measurement	Vc	V	18~24	CAN continuous
Creepage distance	dcp	Mm	7.2	
Clearance	dcı	Mm	7.0	
RMS voltage for AC insulation test	Vd	KV	2.5	50 Hz, 1 min
Voltage for DC insulation test	Vd	KV	5.0	
Insulation resistance	\mathbf{R}_{INS}	MΩ	500	500V@ 1min
IP level			IP42	1 min



General Operating Specification:

Parameter		Symbol	Unit	Specification			Conditions	
				Min.	Тур.	Max.	Conditions	
Primary current measurement range		I_{PN}	А	-500		500		
Supply vol	tage	U _C	V	7	12	18	full precision	
Maximum	voltage	Uup	V		18.1		when Uc rises	
hysteresis	-		V		17.7		when Uc falls	
Minimum	voltage	TT	V		7.1		when Uc rises	
hysteresis	C	U _{LOW}	V		6.8		when Uc falls	
Current consumption	Current consumption@Ip=0A		mA		20	30	@ VC= 12.0V, CAN work normally	
Current consumption@Ip=500A		Ic	mA		150	200	@VC= 12.0 V, CAN work normally	
Working te	Working temperature		°C	-40		85	temperature range, accuracy guaranteed to $\pm 3 \delta$	
Total accuracy		X _G	%	-0.5		0.5	$T = -40 \sim 85^{\circ}C \ ; \pm 3\delta$	
	IP=± 6A	X _G	V	-0.2A		0.2A		
Destant	IP=± 80A	X _G	V	-0.5A		0.5A		
Regional error	IP=±350A	X_{G}	V	-1.75A		1.75A	$T = -40 \sim 85^{\circ}C$	
	IP=±500A	X _G	V	-2.5A		2.5A		
Linearity		εL	%		0.1		at room temperature	
Gain temperature drift		TCG	ppm/°C		20			

Error graph:

Influence of external magnetic field:

CS09H-500A-C Series Closed Loop Hall current sensors use a very precise technology and provide customers with current measurement needs of applications.

In order to achieve this accuracy, some conditions must be observed when designing the sensor environment:

- ♦ Main busbar alignment
- ♦ Bus bar shape
- ♦ Contactor location

CAN output specification:

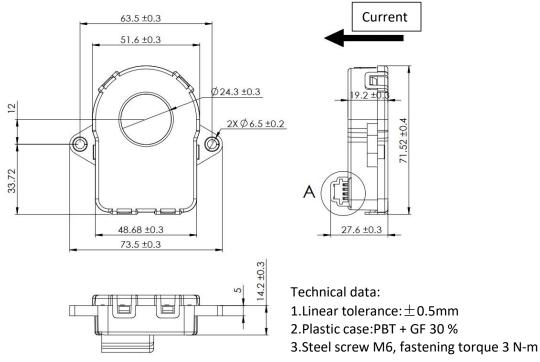
- ♦ CAN protocol 2.0 A/B
- Bit order: big-endian mode (Motorola)
- ◆ CAN oscillator tolerance : 0.3125 %
- ◆ No sleep mode capability

Message Description	CAN ID	Name	Data length (Nb bytes)	Type of frame	Send cycle	Information description	Signal name	Start bit	End bit
	See the					Ip current value: 80000000H=0mA, 7FFFFFFH=- 1mA, 8000001H=1mA	IPVALUE	0	31
Primary current IP (mA)	nary product CS09H 8 standard nt IP model - 500In 8 frame		standard frame	10ms loop sending	Fault identification bit (0=normal, 1=fault)	ERROR INDICATION	32	32	
	details			Schu.		Fault information (when the fault flag is 0, it is 0x64)	ERROR INFORMATION	33	39
						Fixed at 0x48 0x11	SENSORNAME	40	55
						Software version	SWRevision	56	63

CS09H-500A-C SERIES CLOSED LOOP HALL CURRENT SENSOR/TRANSDUCER

Fault management:

	une munugemente							
SN	Failure mode	IP value	Fault flag	Error code				
1	CRC check error failure	0x FFFFFFFF	1	0x40				
2	A FE overload fault	0x FFFFFFFF	1	0x41				
3	A FE error failure	0x FFFFFFFF	1	0x42				
4	Internal LUT failure	0x FFFFFFFF	1	0x44				
5	Power supply undervoltage fault	0x FFFFFFFF	1	0x46				
6	Power supply Over-voltage fault	0x FFFFFFFF	1	0x47				

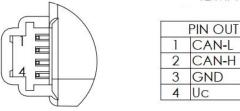

Product model list:

SN	PRODUCT NUMBER	CAN ID	CAN COMMUNICATION BAUD RATE (KBPS)	
1	CS09H-500A-C20	0x03C0	250	
2	CS09H-500A-C21	0x03C1	250	
3	CS09H-500A-C22	0x03C2	250	
4	CS09H-500A-C23	0x03C3	250	
5	CS09H-500A-C24	0x03C4	250	
6	CS09H-500A-C25	0x03C5	250	
7	CS09H-500A-C26	0x03C6	250	
8	CS09H-500A-C27	0x03C7	250	
9	CS09H-500A-C28	0x03C8	250	
10	CS09H-500A-C29	0x03C9	250	
11	CS09H-500A-C50	0x03C0	500	
12	CS09H-500A-C51	0x03C1	500	
13	CS09H-500A-C52	0x03C2	500	
14	CS09H-500A-C53	0x03C3	500	
15	CS09H-500A-C54	0x03C4	500	
16	CS09H-500A-C55	0x03C5	500	
17	CS09H-500A-C56	0x03C6	500	
18	CS09H-500A-C57	0x03C7	500	
19	CS09H-500A-C58	0x03C8	500	
20	СЅ09Н-500А-С59	0x03C9	500	

CS09H-500A-C SERIES CLOSED LOOP HALL CURRENT SENSOR/TRANSDUCER

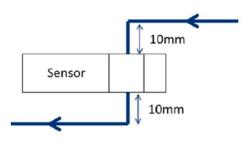
Mechanical Dimensions:

Main materials:


- ◆ Plastic case: PBT + GF 30 %
- ◆ Core: Permalloy
- ♦ Gross weight: 87g

Installation recommendation:

- ◆ Assembly: The sensor must be assembled with plastic rivets;
- ◆ Maximum load of fixed ear: 70N;
- ◆ Connector type: TE MPN 1473672-1.


Linker description:

electrical connectors TE MPN 1473672-1

Primary side bus wiring suggestion:

- S-type wiring is recommended
- If you have any questions about busbar wiring design, or to integrate multiple sensors into complex system, please contact our technical support.

Safety

This device must be used according to IEC61010-1.

This device must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the operating instructions.

Caution, risk of electrical shock.

When operating the device, certain parts can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield can be used.

Main supply must be able to be disconnected.

Youtube 视屏链接 https://www.youtube.com/watch?v=dcARKQsIpSI